Self-Similar Vector Fields
نویسنده
چکیده
We propose statistically self-similar and rotation-invariant models for vector fields, study some of the more significant properties of these models, and suggest algorithms and methods for reconstructing vector fields from numerical observations, using the same notions of self-similarity and invariance that give rise to our stochastic models. We illustrate the efficacy of the proposed schemes by applying them to the problems of denoising synthetic flow phantoms and enhancing flow-sensitive magnetic resonance imaging (MRI) of blood flow in the aorta. In constructing our models and devising our applied schemes and algorithms, we rely on two fundamental notions. The first of these, referred to as ‘innovation modelling’ in the thesis, is the principle—applicable both analytically and synthetically—of reducing complex phenomena to combinations of simple independent components or ‘innovations’. The second fundamental idea is that of ‘invariance’, which indicates that in the absence of any distinguishing factor, two equally valid models or solutions should be given equal consideration.
منابع مشابه
Harmonicity and Minimality of Vector Fields on Lorentzian Lie Groups
We consider four-dimensional lie groups equipped with left-invariant Lorentzian Einstein metrics, and determine the harmonicity properties of vector fields on these spaces. In some cases, all these vector fields are critical points for the energy functional restricted to vector fields. We also classify vector fields defining harmonic maps, and calculate explicitly the energy of t...
متن کاملConcurrent vector fields on Finsler spaces
In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fi...
متن کاملSome vector fields on a riemannian manifold with semi-symmetric metric connection
In the first part of this paper, some theorems are given for a Riemannian manifold with semi-symmetric metric connection. In the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. We obtain some properties of this manifold having the vectors mentioned above.
متن کاملSome geometrical properties of the oscillator group
We consider the oscillator group equipped with a biinvariant Lorentzian metric. Some geometrical properties of this space and the harmonicity properties of left-invariant vector fields on this space are determined. In some cases, all these vector fields are critical points for the energy functional restricted to vector fields. Left-invariant vector fields defining harmonic maps are...
متن کاملMachine learning based Visual Evoked Potential (VEP) Signals Recognition
Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011